Translational Neurodegeneration Group

The goal of our group is to discover and translate new drugs and biomarkers for patients with neurodegenerative diseases, specifically dementia. We conduct research across the translational spectrum, including cell culture, animal physiology, fluid and imaging biomarkers, and clinical trials, to better understand disease mechanisms and identify therapeutic targets.

Our areas of focus include cell death mechanisms, vascular control and brain metabolism, with techniques including bioinformatics and statistics, in vitro and in vivo physiology, and cellular and molecular biology.

Research interests

  • Alzheimer’s disease
  • Ferroptosis
  • Biomarkers
  • Brain metabolism
  • Vascular physiology
Techniques

  • Cell culture
  • Myograph
  • In vivo hemodynamics
  • Mouse behaviour
  • Inductively coupled plasma mass spectrometry
  • SIMOA (single molecule array)

About our research

The our group specialises in bi-directional research translation. This involves both translation of laboratory research into new treatments and biomarkers, and reverse translation of clinical research uncovering associations for mechanistic discovery science. Our research program has led to new clinical trials and studies, and informed new directions for discovery research.

The approach to research is highly collaborative and interdisciplinary and is underpinned by external partnerships with major clinical studies throughout the world extend.

Our group’s work focuses on three key areas:

  • cell death mechanisms
  • vascular physiology/pharmacology
  • brain metabolism.

Research team

Research team head

Team members

Dr Abdel Ali Belaidi

Senior Research Fellow

Dr Francesca Alves

Research Fellow

Dr Ashenafi Betrie

Research Fellow

Dr Pratishtha Chatterjee

Research Fellow

Dr Pawel Kalinowski

Research Fellow

Dr Darius Lane

Research Fellow

Dr Adam Southon

Research Fellow

Dr Emilio Werden

Strategy and Commercial Lead

Research and technical staff

  • Linda Cornthwaite
  • Daria Kornienko
  • Celeste Mawal
  • Scarlett Parker
  • Michelle Shannon
  • Angela Taseska

PhD students

  • Andrew Gleason
  • Owen Jones
  • Stone Ke
  • Phu Minh Triet (Thomas) Nguyen

Masters students

  • Laeeq Hamid
  • Liwen Li
  • Natalie Marryatt
  • Yuxin Wang

Selected publications

  • Ayton S, Barton D, Brew B, Brodtmann A, Clarnette R, Desmond P, Devos D, Ellis KA, Fazlollahi A, Fradette C, Goh AMY, Kalinowski P, Kyndt C, Lai R, Lim YY, Maruff P, O’Brien TJ, Rowe CC, Salvado O, Schofield PW, Spino M, Tricta F, Wagen A, Williams R, Woodward M, Bush AI (2024), ‘Deferiprone in Alzheimer’s disease: a randomized clinical trial’, JAMA Neurology, 1;82(1):11-18, doi://10.1001/jamneruol.2024.3733
  • Alves F, Kalinowski P, Ayton S (2023), ‘Accelerated brain volume loss caused by anti–β-amyloid drugs: a systematic review and meta-analysis’, Neurology, 100(20):e2114-e2124, doi:10.1212/wnl.0000000000207156
  • Ayton S, Janelidze S, Kalinowski P, Palmqvist S, Belaidi AA, Stomrud E, Roberts A, Roberts B, Hansson O, Bush AI (2022), ‘CSF ferritin in the clinicopathological progression of Alzheimer’s disease and associations with APOE and inflammation biomarkers’, Journal of Neurology, Neurosurgery, and Psychiatry, 94(3):211-219, doi:10.1136/jnnp-2022-330052
  • Belaidi AA, Masaldan S, Southon A, Kalinowski P, Acevedo K, Appukuttan AT, Portbury S, Lei P, Agarwal P, Leurgans SE, Schneider J, Conrad M, Bush AI, Ayton S (2022), ‘Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy’, Molecular Psychiatry, doi:10.1038/s41380-022-01568-w
  • Betrie AH, Brock JA, Harraz OF, Bush AI, He G-W, Nelson MT, Angus JA, Wright CE and Ayton S (2021), ‘Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle’, Nature Communications, 12(1):3296, doi:10.1038/s41467-021-23198-6
  • Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA, Morris MC, Bush AI (2021), ‘Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance’, Alzheimer’s & Dementia, 17(7):1244–1256, doi:/10.1002/alz.12282

Contact us

For more information about our group’s research you can contact us by submitting this form.

Please enter your first name
Please enter your last name
Please enter a valid phone number
Please enter a correct email address
Please provide information regarding your enquiry